Homologically homogeneous rings

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homologically arc-homogeneous ENRs

The so-called Modified Bing–Borsuk Conjecture, which grew out of a question in [1], asserts that a homogeneous Euclidean neighborhood retract is a homology manifold. At this mini-workshop on exotic homology manifolds, Frank Quinn asked whether a space that satisfies a similar property, which he calls homological arc-homogeneity, is a homology manifold. The purpose of this note is to show that t...

متن کامل

Rings That Are Homologically of Minimal Multiplicity

Let R be a local Cohen-Macaulay ring with canonical module ωR. We investigate the following question of Huneke: If the sequence of Betti numbers {β i (ωR)} has polynomial growth, must R be Gorenstein? This question is well-understood when R has minimal multiplicity. We investigate this question for a more general class of rings which we say are homologically of minimal multiplicity. We provide ...

متن کامل

A class of Artinian local rings of homogeneous type

‎Let $I$ be an ideal in a regular local ring $(R,n)$‎, ‎we will find‎ ‎bounds on the first and the last Betti numbers of‎ ‎$(A,m)=(R/I,n/I)$‎. ‎if $A$ is an Artinian ring of the embedding‎ ‎codimension $h$‎, ‎$I$ has the initial degree $t$ and $mu(m^t)=1$‎, ‎we call $A$ a {it $t-$extended stretched local ring}‎. ‎This class of‎ ‎local rings is a natural generalization of the class of stretched ...

متن کامل

On Homogeneous Nilpotent Groups and Rings

We give a new framework for the construction of homogeneous nilpotent groups and rings which goes a long way toward unifying the two cases, and enables us to extend previous constructions, producing a variety of new examples. In particular we find ingredients for the manufacture of 2No homogeneous nilpotent groups "in nature".

متن کامل

a class of artinian local rings of homogeneous type

‎let $i$ be an ideal in a regular local ring $(r,n)$‎, ‎we will find‎ ‎bounds on the first and the last betti numbers of‎ ‎$(a,m)=(r/i,n/i)$‎. ‎if $a$ is an artinian ring of the embedding‎ ‎codimension $h$‎, ‎$i$ has the initial degree $t$ and $mu(m^t)=1$‎, ‎we call $a$ a {it $t-$extended stretched local ring}‎. ‎this class of‎ ‎local rings is a natural generalization of the class of stretched ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1984

ISSN: 0002-9947

DOI: 10.1090/s0002-9947-1984-0719665-5